PHY 5346
HW Set 2 Solutions – Kimel
2. 1.8 We will be using Gauss’s law ∫ E⃗ ⋅ da⃗ = Qenc
0
a) 1) Parallel plate capacitor
From Gauss’s law E = σ
0
=
Q
A0
=
φ12
d
→ Q = A0φ12
d
W = 0
2 ∫ E
2d3x = 0E
2Ad
2
=
0
Q
A0
2
Ad
2
= 1
20
Q2
A
d = 1
20
A0φ12
d
2
A
d = 1
2
0A
φ12
2
d
2) Spherical capacitor
From Gauss’s law, E =
1
4π0
Q
r2
, a < r < b.
φ12 = ∫
a
b
Edr = Q
4π 0
∫
a
b
r−2dr = 1
4
Q
π 0
b − a
ba
→ Q =
4π 0baφ12
b − a
W = 0
2 ∫ E
2d3x = 0
2
Q
4π 0
2
∫
a
b
4π r
2dr
r4
=
0
2
Q
4π 0
2
−4π −b + a
ba
= 1
80
Q2
π
b − a
ba
W = 1
80
4π0baφ12
b−a
2
π
b − a
ba
= 2π 0ba
φ12
2
b − a
3) Cylindrical conductor
From Gauss’ s law, E2πrL = λL
0
=
Q
0
φ12 = ∫
a
b
Edr = Q
2π 0L
∫
a
b dr
r =
Q
2π 0L
ln ba
W = 0
2 ∫ E
2d3x = 0
2
Q
2π 0L
2
2πL ∫
a
b rdr
r2
=
1
4π 0
Q2
L
ln ba
W =
1
4π 0
2π0Lφ12
ln
b
a
2
L
ln ba
= π 0L
φ12
2
ln ba
b) w = 02 E
2
1) wr = 02
Q
A0
2
=
1
20
Q2
A2
0 < r < d, = 0 otherwise.
2) wr = 02
1
4π0
Q
r2
2
=
1
320π2
Q2
r4
, a < r < b, = 0, otherwise
3) wr = 02
Q
2π0Lr
2
=
1
80
Q2
π2L2r2
, = 0 otherwise.