PHY 5346
HW Set 6 Solutions – Kimel
3. 4.1
q lm = ∫ r lYlm∗θ,φρx⃗d3x = ∑
i
q ir l
lYl
m∗θ i,φ i
Using
Yl
m∗θ,φ =
2l + 1l − m!
4πl + m!
Pl
mxe−−mφ = N l
mPl
mxe−−mφ
From the figure we get
q lm = a lN l
mPl
m0q1 − −1m 1 − im = 0, for m even, so m = 2n + 1, n = 0,1,2, . . .
q lm = 2qa lN l
mPl
m01 − −1ni
b) The figure for this system is
Since the sum of the charges equals zero, l ≥ 1.
q lm = qa lYl
m∗x = 1,φ + Yl
m∗x = −1,φ = qa lN lmPlm1 + Plm−1
From the Rodrigues formula for Pl
mx, we see Pl
m±1 = 0, for m ≠ 0. So
q lm = qa lN l
01 + −1 l Pl1
Thus l is even, but l ≠ 0
q lm = 2qa lN l
0
c) Using the fact that N l
0 =
2l+1
4π and Yl
0 =
2l+1
4π Pl
Φx⃗ = ∑
l=2
∞
2qa l
Plx
r l+1
≈ 2qa
2
r3
P2x = 0 on x-y plane)
Φx⃗ = − qa
2
r3
Let us plot Φx⃗/−q/a, ie,
1
ra
3 =
1
x3
0
1
2
3
4
5
6
7
8
0.5
1
1.5
2
2.5
3
x
The exact answer on the x-y plane is
Φx⃗ = −qa
2
x −
2
x 1 + 1
x2
=
−q
a
1
x
3
− 3
4
1
x
5
+ 5
8
1
x
7
− 35
64
1
x
9
+. . . .
So let’s plot 1
x3
, 2x −
2
x 1+ 1
x2
0
0.05
0.1
0.15
0.2
0.25
0.3
1
2
3
4
5
x
where the smaller is the exact answer.