Loading ...
testbanks...
Other
6524
1
Try Now
Log In
Pricing
<p>Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen Chapter 2 2.1 Sketch _______________________________________ 2.2 Sketch _______________________________________ 2.3 Sketch _______________________________________ 2.4 From Problem 2.2, phase t x 2 = constant Then 2 ,0 2 p dt dx dt dx From Problem 2.3, phase t x 2 = constant Then 2 ,0 2 p dt dx dt dx _______________________________________ 2.5 E hc hc h E Gold: 90 .4 E eV 19 10 6 .1 90 .4 J So, 5 19 10 34 10 54 .2 10 6 .1 90 .4 10 3 10 625 .6 cm or 254 .0 m Cesium: 90 .1 E eV 19 10 6 .1 90 .1 J So, 5 19 10 34 10 54 .6 10 6 .1 90 .1 10 3 10 625 .6 cm or 654 .0 m _______________________________________ 2.6 (a) 9 34 10 550 10 625 .6 h p 27 10 205 .1 kg-m/s 3 31 27 10 32 .1 10 11 .9 10 2045 .1 m p m/s or 5 10 32 .1 cm/s (b) 9 34 10 440 10 625 .6 h p 27 10 506 .1 kg-m/s 3 31 27 10 65 .1 10 11 .9 10 5057 .1 m p m/s or 5 10 65 .1 cm/s (c) Yes _______________________________________ 2.7 (a) (i) 19 31 10 6 .1 2 .1 10 11 .9 2 2 mE p 25 10 915 .5 kg-m/s 9 25 34 10 12 .1 10 915 .5 10 625 .6 p h m or o A 2 . 11 (ii) 19 31 10 6 .1 12 10 11 .9 2 p 24 10 87 .1 kg-m/s 10 24 34 10 54 .3 10 8704 .1 10 625 .6 m or o A 54 .3 (iii) 19 31 10 6 .1 120 10 11 .9 2 p 24 10 915 .5 kg-m/s 10 24 34 10 12 .1 10 915 .5 10 625 .6 m or o A 12 .1 Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen (b) 19 27 10 6 .1 2 .1 10 67 .1 2 p 23 10 532 .2 kg-m/s 11 23 34 10 62 .2 10 532 .2 10 625 .6 m or o A 262 .0 _______________________________________ 2.8 03885 .0 0259 .0 2 3 2 3 kT Eavg eV Now avg avg mE p 2 19 31 10 6 .1 03885 .0 10 11 .9 2 or 25 10 064 .1 avg p kg-m/s Now 9 25 34 10 225 .6 10 064 .1 10 625 .6 p h m or o A 25 . 62 _______________________________________ 2.9 p p p hc h E Now m p E e e 2 2 and 2 2 1 e e e e h m E h p Set e p E E and e p 10 Then 2 2 10 2 1 2 1 p e p h m h m hc which yields mc h p 2 100 100 2 2 100 2 mc mc h hc hc E E p p 100 10 3 10 11 .9 2 2 8 31 15 10 64 .1 J 25 . 10 keV _______________________________________ 2.10 (a) 10 34 10 85 10 625 .6 h p 26 10 794 .7 kg-m/s 4 31 26 10 56 .8 10 11 .9 10 794 .7 m p m/s or 6 10 56 .8 cm/s 2 4 31 2 10 56 . 8 10 11 . 9 2 1 2 1 m E 21 10 33 .3 J or 2 19 21 10 08 .2 10 6 .1 10 334 .3 E eV (b) 2 3 31 10 8 10 11 . 9 2 1 E 23 10 915 .2 J or 4 19 23 10 82 .1 10 6 .1 10 915 .2 E eV 3 31 10 8 10 11 .9 m p 27 10 288 .7 kg-m/s 8 27 35 10 09 .9 10 288 .7 10 625 .6 p h m or o A 909 _______________________________________ 2.11 (a) 10 8 34 10 1 10 3 10 625 .6 hc h E 15 10 99 .1 J Now 19 15 10 6 .1 10 99 .1 e E V V e E 4 10 24 .1 V V 4 . 12 kV (b) 15 31 10 99 .1 10 11 .9 2 2 mE p 23 10 02 .6 kg-m/s Then 11 23 34 10 10 .1 10 02 .6 10 625 .6 p h m or o A 11 . 0 _______________________________________ Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen 2.12 6 34 10 10 054 .1 x p 28 10 054 .1 kg-m/s _______________________________________ 2.13 (a) (i) x p 26 10 34 10 783 .8 10 12 10 054 .1 p kg-m/s (ii) p m p dp d p dp dE E 2 2 m p p p m p 2 2 Now mE p 2 19 31 10 6 .1 16 10 9 2 24 10 147 .2 kg-m/s so 31 26 24 10 9 10 783 .8 10 1466 .2 E 19 10 095 .2 J or 31 .1 10 6 .1 10 095 .2 19 19 E eV (b) (i) 26 10 783 .8 p kg-m/s (ii) 19 28 10 6 .1 16 10 5 2 p 23 10 06 .5 kg-m/s 28 26 23 10 5 10 783 .8 10 06 .5 E 21 10 888 .8 J or 2 19 21 10 55 .5 10 6 .1 10 888 .8 E eV _______________________________________ 2.14 32 2 34 10 054 .1 10 10 054 .1 x p kg-m/s 1500 10 054 .1 32 m p m p 36 10 7 m/s _______________________________________ 2.15 (a) t E 16 19 34 10 23 .8 10 6 .1 8 . 0 10 054 .1 t s (b) 10 34 10 5 .1 10 054 .1 x p 25 10 03 .7 kg-m/s _______________________________________ 2.16 (a) If t x, 1 and t x, 2 are solutions to Schrodinger's wave equation, then t t x j t x x V x t x m , , , 2 1 1 2 1 2 2 and t t x j t x x V x t x m , , , 2 2 2 2 2 2 2 Adding the two equations, we obtain t x t x x m , , 2 2 1 2 2 2 t x t x x V , , 2 1 t x t x t j , , 2 1 which is Schrodinger's wave equation. So t x t x , , 2 1 is also a solution. (b) If t x t x , , 2 1 were a solution to Schrodinger's wave equation, then we could write 2 1 2 1 2 2 2 2 x V x m 2 1 t j which can be written as x x x x m 2 1 2 1 2 2 2 2 2 1 2 2 2 t t j x V 1 2 2 1 2 1 Dividing by 2 1 , we find x x x x m 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 2 t t j x V 1 1 2 2 1 1 Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen Since 1 is a solution, then t j x V x m 1 1 2 1 2 1 2 1 1 2 Subtracting these last two equations, we have x x x m 2 1 2 1 2 2 2 2 2 2 1 2 t j 2 2 1 Since 2 is also a solution, we have t j x V x m 2 2 2 2 2 2 2 1 1 2 Subtracting these last two equations, we obtain 0 2 2 2 1 2 1 2 x V x x m This equation is not necessarily valid, which means that 2 1 is, in general, not a solution to Schrodinger's wave equation. _______________________________________ 2.17 1 2 cos2 3 1 2 dx x A 1 2 sin 2 3 1 2 x x A 1 2 1 2 3 2 A so 2 1 2 A or 2 1 A _______________________________________ 2.18 1 cos2 2 / 1 2 / 1 2 dx x n A 1 4 2 sin 2 2 / 1 2 / 1 2 n x n x A 2 1 1 4 1 4 1 2 2 A A or 2 A _______________________________________ 2.19 Note that 1 0 * dx Function has been normalized. (a) Now dx a x a P o a o o 2 4 0 exp 2 dx a x a o a o o 4 0 2 exp 2 4 0 2 exp 2 2 o a o o o a x a a or 2 1 exp 1 1 4 2 exp 1 o o a a P which yields 393 .0 P (b) dx a x a P o o a a o o 2 2 4 exp 2 dx a x a o o a a o o 2 4 2 exp 2 2 4 2 exp 2 2 o o a a o o o a x a a or 2 1 exp 1 exp 1 P which yields 239 .0 P (c) dx a x a P o a o o 2 0 exp 2 dx a x a o a o o 0 2 exp 2 o a o o o a x a a 0 2 exp 2 2 1 2 exp 1 which yields 865 .0 P _______________________________________ Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen 2.20 dx x P 2 (a) dx x a a 2 cos 2 2 4 / 0 4 / 0 4 2 sin 2 2 a a a x x a ��� a a a 4 2 sin 2 4 2 4 1 8 2 a a a or 409 .0 P (b) dx a x a P a a 2 / 4 / 2 cos 2 2 / 4 / 4 2 sin 2 2 a a a a x x a a a a a a 4 2 sin 8 4 sin 4 2 4 1 8 1 0 4 1 2 or 0908 .0 P (c) dx a x a P a a 2 2 / 2 / cos 2 2 / 2 / 4 2 sin 2 2 a a a a x x a a a a a a 4 sin 4 4 sin 4 2 or 1 P _______________________________________ 2.21 (a) dx a x a P a 2 sin 2 2 4 / 0 4 / 0 2 4 4 sin 2 2 a a a x x a a a a 8 sin 8 2 or 25 .0 P (b) dx a x a P a a 2 sin 2 2 2 / 4 / 2 / 4 / 2 4 4 sin 2 2 a a a a x x a a a a a a 8 sin 8 8 2 sin 4 2 or 25 .0 P (c) dx a x a P a a 2 sin 2 2 2 / 2 / 2 / 2 / 2 4 4 sin 2 2 a a a a x x a a a a a a 8 2 sin 4 8 2 sin 4 2 or 1 P _______________________________________ 2.22 (a) (i) 4 8 12 10 10 8 10 8 k p m/s or 6 10 p cm/s 9 8 10 854 .7 10 8 2 2 k m Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen or o A 54 . 78 (ii) 4 31 10 10 11 .9 m p 27 10 11 .9 kg-m/s 2 4 31 2 10 10 11 . 9 2 1 2 1 m E 23 10 555 .4 J or 4 19 23 10 85 .2 10 6 .1 10 555 .4 E eV (b) (i) 4 9 13 10 10 5 .1 10 5 .1 ��� k p m/s or 6 10 p cm/s 9 9 10 19 .4 10 5 .1 2 2 k m or o A 9 . 41 (ii) 27 10 11 .9 p kg-m/s 4 10 85 .2 E eV _______________________________________ 2.23 (a) t kx j Ae t x , (b) 2 19 2 1 10 6 . 1 025 . 0 m E 2 31 10 11 . 9 2 1 so 4 10 37 .9 m/s 6 10 37 .9 cm/s For electron traveling in x direction, 6 10 37 .9 cm/s 4 31 10 37 .9 10 11 .9 m p 26 10 537 .8 kg-m/s 9 26 34 10 76 .7 10 537 .8 10 625 .6 p h m 8 9 10 097 .8 10 76 .7 2 2 k m 1 4 8 10 37 .9 10 097 .8 k or 13 10 586 .7 rad/s _______________________________________ 2.24 (a) 4 31 10 5 10 11 .9 m p 26 10 555 .4 kg-m/s 8 26 34 10 454 .1 10 555 .4 10 625 .6 p h m 8 8 10 32 .4 10 454 .1 2 2 k m 1 4 8 10 5 10 32 .4 k 13 10 16 .2 rad/s (b) 6 31 10 10 11 .9 p 25 10 11 .9 kg-m/s 10 25 34 10 27 .7 10 11 .9 10 625 .6 m 9 10 10 64 .8 10 272 .7 2 k m 1 15 6 9 10 64 .8 10 10 64 .8 rad/s _______________________________________ 2.25 2 10 31 2 2 34 2 2 2 2 2 10 75 10 11 . 9 2 10 054 . 1 2 n ma n En 21 2 10 0698 .1 n En J or 19 21 2 10 6 .1 10 0698 .1 n En or 3 2 10 686 .6 n En eV Then 3 1 10 69 .6 E eV 2 2 10 67 .2 E eV 2 3 10 02 .6 E eV _______________________________________ 2.26 (a) 2 10 31 2 2 34 2 2 2 2 2 10 10 10 11 . 9 2 10 054 . 1 2 n ma n En 20 2 10 018 .6 n J or 3761 .0 10 6 .1 10 018 .6 2 19 20 2 n n En eV Then 376 .0 1 E eV 504 .1 2 E eV 385 .3 3 E eV (b) E hc 19 10 6 .1 504 .1 385 .3 E 19 10 01 .3 J Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen 19 8 34 10 01 .3 10 3 10 625 .6 7 10 604 .6 m or 4 . 660 nm _______________________________________ 2.27 (a) 2 2 2 2 2ma n En 2 2 3 2 2 34 2 3 10 2 . 1 10 15 2 10 054 . 1 10 15 n 62 2 3 10 538 .2 10 15 n or 29 10 688 .7 n (b) 15 1 nE mJ (c) No _______________________________________ 2.28 For a neutron and 1 n : 2 14 27 2 2 34 2 2 2 1 10 10 66 .1 2 10 054 . 1 2 ma E 13 10 3025 .3 J or 6 19 13 1 10 06 .2 10 6 .1 10 3025 .3 E eV For an electron in the same potential well: 2 14 31 2 2 34 1 10 10 11 . 9 2 10 054 . 1 E 10 10 0177 .6 J or 9 19 10 1 10 76 .3 10 6 .1 10 0177 .6 E eV _______________________________________ 2.29 Schrodinger's time-independent wave equation 0 2 2 2 2 x x V E m x x We know that 0 x for 2 a x and 2 a x We have 0 x V for 2 2 a x a so in this region 0 2 2 2 2 x mE x x The solution is of the form kx B kx A x sin cos where 2 2 mE k Boundary conditions: 0 x at 2 , 2 a x a x First mode solution: x k A x 1 1 1 cos where 2 2 2 1 1 2ma E a k Second mode solution: x k B x 2 2 2 sin where 2 2 2 2 2 2 4 2 ma E a k Third mode solution: x k A x 3 3 3 cos where 2 2 2 3 3 2 9 3 ma E a k Fourth mode solution: x k B x 4 4 4 sin where 2 2 2 4 4 2 16 4 ma E a k _______________________________________ 2.30 The 3-D time-independent wave equation in cartesian coordinates for 0 , , z y x V is: 2 2 2 2 2 2 , , , , , , z z y x y z y x x z y x 0 , , 2 2 z y x mE Use separation of variables, so let z Z y Y x X z y x , , Substituting into the wave equation, we obtain Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen 2 2 2 2 2 2 z Z XY y Y XZ x X YZ 0 2 2 XYZ mE Dividing by XYZ and letting 2 2 2 mE k , we find (1) 0 1 1 1 2 2 2 2 2 2 2 k z Z Z y Y Y x X X We may set 0 1 2 2 2 2 2 2 X k x X k x X X x x Solution is of the form x k B x k A x X x x cos sin Boundary conditions: 0 0 0 B X and a n k a x X x x 0 where .... 3 , 2 ,1 xn Similarly, let 2 2 2 1 y k y Y Y and 2 2 2 1 zk z Z Z Applying the boundary conditions, we find a n k y y , .... 3 , 2 ,1 yn a n k z z , ... 3 , 2 ,1 zn From Equation (1) above, we have 0 2 2 2 2 k k k k z y x or 2 2 2 2 2 2 mE k k k k z y x so that 2 2 2 2 2 2 2 z y x n n n n n n ma E E z y x _______________________________________ 2.31 (a) 0 , 2 , , 2 2 2 2 2 y x mE y y x x y x Solution is of the form: y k x k A y x y x sin sin , We find y k x k Ak x y x y x x sin cos , y k x k Ak x y x y x x sin sin , 2 2 2 y k x k Ak y y x y x y cos sin , y k x k Ak y y x y x y sin sin , 2 2 2 Substituting into the original equation, we find: (1) 0 2 2 2 2 mE k k y x From the boundary conditions, 0 sin a k A x , where o A a 40 So a n k x x , ... , 3 , 2 ,1 xn Also 0 sin b k A y , where o A b 20 So b n k y y , ... , 3 , 2 ,1 yn Substituting into Eq. (1) above 2 2 2 2 2 2 2 2 b n a n m E y x n n y x (b)Energy is quantized - similar to 1-D result. There can be more than one quantum state per given energy - different than 1-D result. _______________________________________ 2.32 (a) Derivation of energy levels exactly the same as in the text (b) 2 1 2 2 2 2 2 2 n n ma E For 1 ,2 1 2 n n Then 2 2 2 2 3 ma E (i) For o A a 4 2 10 27 2 2 34 10 4 10 67 . 1 2 10 054 . 1 3 E 22 10 155 .6 J or 3 19 22 10 85 .3 10 6 .1 10 155 .6 E eV Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen (ii) For 5 .0 a cm 2 2 27 2 2 34 10 5 .0 10 67 .1 2 10 054 .1 3 E 36 10 939 .3 J or 17 19 36 10 46 .2 10 6 .1 10 939 .3 E eV _______________________________________ 2.33 (a) For region II, 0 x 0 2 2 2 2 2 2 x V E m x x O General form of the solution is x jk B x jk A x 2 2 2 2 2 exp exp where OV E m k 2 2 2 Term with 2B represents incident wave and term with 2A represents reflected wave. Region I, 0 x 0 2 1 2 2 1 2 x mE x x General form of the solution is x jk B x jk A x 1 1 1 1 1 exp exp where 2 1 2 mE k Term involving 1B represents the transmitted wave and the term involving 1A represents reflected wave: but if a particle is transmitted into region I, it will not be reflected so that 0 1 A . Then x jk B x 1 1 1 exp x jk B x jk A x 2 2 2 2 2 exp exp (b) Boundary conditions: (1) 0 0 2 1 x x (2) 0 2 0 1 x x x x Applying the boundary conditions to the solutions, we find 2 2 1 B A B 1 1 2 2 2 2 B k B k A k Combining these two equations, we find 2 1 2 1 2 2 B k k k k A ��� 2 1 2 2 1 2 B k k k B The reflection coefficient is 2 1 2 1 2 * 2 2 * 2 2 k k k k B B A A R The transmission coefficient is 2 2 1 2 1 4 1 k k k k T R T _______________________________________ 2.34 x k A x 2 2 2 exp x k A A x P 2 * 2 2 2 2 exp where 2 2 2 E V m k o 34 19 31 10 054 .1 10 6 . 1 8 . 2 5 . 3 10 11 .9 2 9 2 10 286 .4 k m 1 (a) For 10 10 5 5 o A x m x k P 2 2 exp 10 9 10 5 10 2859 .4 2 exp 0138 .0 (b) For 10 10 15 15 o A x m 10 9 10 15 10 2859 .4 2 exp P 6 10 61 .2 (c) For 10 10 40 40 o A x m 10 9 10 40 10 2859 .4 2 exp P 15 10 29 .1 _______________________________________ 2.35 a k V E V E T o o 2 2 exp 1 16 where 2 2 2 E V m k o 34 19 31 10 054 .1 10 6 .1 1 . 0 0 . 1 10 11 .9 2 Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen or 2 k 9 10 860 .4 m 1 (a) For 10 10 4 a m 10 9 10 4 10 85976 .4 2 exp 0 .1 1 . 0 1 0 .1 1 . 0 16 T 0295 .0 (b) For 10 10 12 a m 10 9 10 12 10 85976 .4 2 exp 0 .1 1 . 0 1 0 .1 1 . 0 16 T 5 10 24 .1 (c) e N J t , where tN is the density of transmitted electrons. 1 .0 E eV 20 10 6 .1 J 2 31 2 10 11 . 9 2 1 2 1 m 5 10 874 .1 m/s 7 10 874 .1 cm/s 7 19 3 10 874 .1 10 6 .1 10 2 .1 tN 8 10 002 .4 tN electrons/cm 3 Density of incident electrons, 10 8 10 357 .1 0295 .0 10 002 .4 iN cm 3 _______________________________________ 2.36 a k V E V E T O O 2 2 exp 1 16 (a) For om m 067 .0 2 2 2 E V m k O 2 / 1 2 34 19 31 10 054 .1 10 6 .1 2 . 0 8 . 0 10 11 .9 067 .0 2 or 9 2 10 027 .1 k m 1 Then 8 .0 2 . 0 1 8 .0 2 . 0 16 T 10 9 10 15 10 027 .1 2 exp or 138 .0 T (b) For om m 08 .1 2 k = 2 / 1 2 34 19 31 10 054 .1 10 6 .1 2 . 0 8 . 0 10 11 .9 08 .1 2 or 9 2 10 124 .4 k m 1 Then 8 .0 2 . 0 1 8 .0 2 . 0 16 T 10 9 10 15 10 124 .4 2 exp or 5 10 27 .1 T _______________________________________ 2.37 a k V E V E T o o 2 2 exp 1 16 where 2 2 2 E V m k o 34 19 6 27 10 054 .1 10 6 .1 10 1 12 10 67 .1 2 14 10 274 .7 m 1 (a) 14 14 10 10 274 .7 2 exp 12 1 1 12 1 16 T 548 . 14 exp 222 .1 7 10 875 .5 (b) 7 10 875 .5 10 T a 14 10 274 .7 2 exp 222 .1 6 14 10 875 .5 222 .1 ln 10 274 .7 2 a or 14 10 842 .0 a m _______________________________________ 2.38 Region I 0 x , 0 V ; Region II a x 0 , OV V Region III a x , 0 V (a) Region I: x jk B x jk A x 1 1 1 1 1 exp exp (incident) (reflected) Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen where 2 1 2 mE k Region II: x k B x k A x 2 2 2 2 2 exp exp where 2 2 2 E V m k O Region III: x jk B x jk A x 1 3 1 3 3 exp exp (b) In Region III, the 3B term represents a reflected wave. However, once a particle is transmitted into Region III, there will not be a reflected wave so that 0 3 B . (c) Boundary conditions: At 0 x : 2 1 2 2 1 1 B A B A dx d dx d 2 1 2 2 2 2 1 1 1 1 B k A k B jk A jk At a x : 3 2 a k B a k A 2 2 2 2 exp exp a jk A 1 3 exp dx d dx d 3 2 a k B k a k A k 2 2 2 2 2 2 exp exp a jk A jk 1 3 1 exp The transmission coefficient is defined as * 1 1 * 3 3 A A A A T so from the boundary conditions, we want to solve for 3A in terms of 1A . Solving for 1A in terms of 3A , we find a k a k k k k k jA A 2 2 2 1 2 2 2 1 3 1 exp exp 4 a k a k k jk 2 2 2 1 exp exp 2 a jk1 exp We then find a k k k k k A A A A 2 2 1 2 2 2 2 1 * 3 3 * 1 1 exp 4 2 2 exp a k 2 2 2 2 2 2 1 exp exp 4 a k a k k k We have 2 2 2 E V m k O If we assume that E VO , then a k2 will be large so that a k a k 2 2 exp exp We can then write 2 2 2 1 2 2 2 2 1 * 3 3 * 1 1 exp 4 a k k k k k A A A A 2 2 2 2 2 1 exp 4 a k k k which becomes a k k k k k A A A A 2 2 1 2 2 2 2 1 * 3 3 * 1 1 2 exp 4 Substituting the expressions for 1k and 2 k , we find 2 2 2 2 1 2 O mV k k and 2 2 2 2 2 1 2 2 mE E V m k k O E E V m O 2 2 2 E V E V m O O 1 2 2 2 Then E V E V m a k mV A A A A O O O 1 2 16 2 exp 2 2 2 2 2 2 * 3 3 * 1 1 a k V E V E A A O O 2 * 3 3 2 exp 1 16 Finally, a k V E V E A A A A T O O 2 * 1 1 * 3 3 2 exp 1 16 _____________________________________ Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen 2.39 Region I: 0 V 0 2 1 2 2 1 2 x mE x x x jk B x jk A x 1 1 1 1 1 exp exp incident reflected where 2 1 2 mE k Region II: 1V V 0 2 2 2 1 2 2 2 x V E m x x x jk B x jk A x 2 2 2 2 2 exp exp transmitted reflected where 2 1 2 2 V E m k Region III: 2V V 0 2 3 2 2 2 3 2 x V E m x x x jk A x 3 3 3 exp transmitted where 2 2 3 2 V E m k There is no reflected wave in Region III. The transmission coefficient is defined as: * 1 1 * 3 3 1 3 * 1 1 * 3 3 1 3 A A A A k k A A A A T From the boundary conditions, solve for 3A in terms of 1A . The boundary conditions are: At 0 x : 2 1 2 2 1 1 B A B A x x 2 1 2 2 2 2 1 1 1 1 B k A k B k A k At a x : 3 2 a jk B a jk A 2 2 2 2 exp exp a jk A 3 3 exp x x 3 2 a jk B k a jk A k 2 2 2 2 2 2 exp exp a jk A k 3 3 3 exp But n a k 2 2 1 exp exp 2 2 a jk a jk Then, eliminating 1B , 2A , 2B from the boundary condition equations, we find 2 3 1 3 1 2 3 1 2 1 1 3 4 4 k k k k k k k k k T _______________________________________ 2.40 (a) Region I: Since E VO , we can write ��� 0 2 1 2 2 1 2 x E V m x x O Region II: 0 V , so 0 2 2 2 2 2 2 x mE x x Region III: 0 3 V The general solutions can be written, keeping in mind that 1 must remain finite for 0 x , as x k B x 1 1 1 exp x k B x k A x 2 2 2 2 2 cos sin 0 3 x where 2 1 2 E V m k O and 2 2 2 mE k (b) Boundary conditions At 0 x : 2 1 2 1 B B 2 2 1 1 2 1 A k B k x x At a x : 3 2 0 cos sin 2 2 2 2 a k B a k A or a k A B 2 2 2 tan (c) 1 2 1 2 2 2 1 1 B k k A A k B k and since 2 1 B B , then 2 2 1 2 B k k A Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen From a k A B 2 2 2 tan , we can write a k B k k B 2 2 2 1 2 tan or a k k k 2 2 1 tan 1 This equation can be written as a mE E E VO 2 2 tan 1 or a mE E V E O 2 2 tan This last equation is valid only for specific values of the total energy E . The energy levels are quantized. _______________________________________ 2.41 2 2 2 4 2 4 n e m E o o n (J) 2 2 2 3 2 4 n e m o o (eV) 2 2 34 2 12 3 19 31 10 054 . 1 2 10 85 . 8 4 10 6 . 1 10 11 . 9 n or 2 58 . 13 n En (eV) 58 . 13 1 1 E n eV 395 .3 2 2 E n eV 51 .1 3 3 E n eV 849 .0 4 4 E n eV _______________________________________ 2.42 We have o o a r a exp 1 1 2 / 3 100 and * 100 100 2 4 r P o o a r a r 2 exp 1 1 4 3 2 or o o a r r a P 2 exp 4 2 3 To find the maximum probability 0 dr r dP o o o a r r a a 2 exp 2 4 2 3 oa r r 2 exp 2 which gives o o a r a r 1 0 or oa r is the radius that gives the greatest probability. _______________________________________ 2.43 100 is independent of and , so the wave equation in spherical coordinates reduces to 0 2 1 2 2 2 r V E m r r r r o where r a m r e r V o o o 2 2 4 For o o a r a exp 1 1 2 / 3 100 Then o o o a r a a r exp 1 1 1 2 / 3 100 so o o a r r a r r exp 1 1 2 2 / 5 100 2 We then obtain 2 / 5 100 2 1 1 oa r r r o o o a r a r a r r exp exp 2 2 Substituting into the wave equation, we have Full file at http://testbank360.eu/solution-manual-semiconductor-physics-and-devices-4th-edition-neamen o o o o a r a r a r r a r exp exp 2 1 1 2 2 / 5 2 r a m E m o o o 2 2 2 0 exp 1 1 2 / 3 o o a r a where 2 2 2 2 4 1 2 2 4 o o o o a m e m E E Then the above equation becomes o o o o a r r a r a r a 2 2 2 / 3 2 1 exp 1 1 0 2 2 2 2 2 r a m a m m o o o o o or o o a r a exp 1 1 2 / 3 0 2 1 1 2 2 2 r a a a r a o o o o which gives 0 = 0 and shows that 100 is indeed a solution to the wave equation. _______________________________________ 2.44 All elements are from the Group I column of the periodic table. All have one valence electron in the outer shell. _______________________________________ </p>